Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Environ Manage ; 348: 119339, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883837

RESUMO

Algae have been well studied for their abilities to treat wastewater, and several types of treatment systems have been demonstrated at a range of scales. High Rate Algae Ponds (HRAP) are a microalgae-based system and Filamentous Algae Nutrient Scrubbers (FANS) a filamentous algae-based system. For FANS, nutrient removal rates are typically lower and more variable than HRAPs, while HRAPs have lower productivity and poor harvestability. This study investigated if modifying a FANS to mimic HRAPs (using high rate algae mesocosms HRAM), with respect to hydraulic retention time (HRT) and smaller footprint, overcomes FANS limitations, while increasing wastewater treatment and resource recovery compared to HRAPs. Biomass productivity on the FANS (10.5 ± 2.9 g m-2 d-1) and FANS with CO2 addition (19.0 ± 4.8 g m-2 d-1) were significantly higher (p < 0.01) compared to the HRAMs (6.7 ± 1.4 g m-2 d-1) and HRAMs with CO2 addition (8.1 ± 1.2 g m-2 d-1). Under phosphorus replete conditions, biomass production was significantly higher on FANS (44.8 ± 14.4 g m-2 d-1) than HRAMs (5.0 ± 0.6 g m-2 d-1). Effluent quality (nutrient removal) was significantly higher (p < 0.05) for FANS compared to HRAMS, regardless of treatment. For harvesting, FANS (2.9-41%) yielded significantly higher (p < 0.01) percentage solids with, and, without dewatering/gravity harvesting compared to the HRAM (0.04-0.11%). Modifying the operation of the FANS to mimic longer HRT of HRAMs resulted in higher areal biomass productivity and nutrient removal in the FANS than the HRAM, regardless of treatment. The use of filamentous algae on FANS greatly improved the percentage solids yield in the harvested biomass without the need for energy intensive harvesting techniques. Further investigations need to be undertaken to determine if benefits will be realised at fullscale.


Assuntos
Microalgas , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Dióxido de Carbono , Águas Residuárias , Biomassa , Lagoas
2.
J Environ Manage ; 313: 115018, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405545

RESUMO

Dissolved organic phosphorus (DOP) accounts for a substantial proportion of the total phosphorus remaining in the wastewater discharge and remains a concern for the receiving environment. This study assessed the potential of wastewater microalgae for the bioremediation of DOP from anaerobically digested food-waste centrate. For high DOP to low DIP ratio, the microalgal consortia was able to remove over 98% of DOP and 95% of total dissolved phosphorus. However, under a 1:1 ratio of DOP to DIP, the microalgal consortia was only able to remove 5% of the organic phosphorus and 76% of total dissolved phosphorus. All five main microalgal species were capable of producing alkaline phosphatase to some degree, the enzyme responsible for hydrolysing the phosphorus. For the dominant species Desmodesmus communis, total phosphatase activity reduced from 46.0 ± 2.3 mmol L-1 h-1 in axenic cultures to only 6.3 ± 0.7 mmol L-1 h-1 in presence of its microbiome. This resulted in a reduction in biomass from 209 ± 13 g m-3 to 73 ± 5 g m-3. For Tetradesmus dimorphus, alkaline phosphatase increased from 6.5 ± 0.3 mmol L-1 h-1 in the axenic culture to 169.8 ± 40.1 mmol L-1 h-1 in presence of both its microbiome and centrate-sourced bacteria but had little impact on biomass production. DOP removal rates across all five species, in all treatments ranged from 17 to 91%. With the exception of D. communis, the nutrient removal efficiency of DOP per unit biomass suggested luxury uptake of phosphorus into the microalgal cell. For wastewaters with low inorganic and moderate to high organic phosphorus microalgal-based wastewater treatment systems may offer a cost-effective mechanism for the removal and recovery of dissolved organic phosphorus from wastewater. Further research on refining organic phosphorus bioremediation in a range of wastewater types, particularly at pilot and full-scale, is needed.


Assuntos
Microalgas , Fosfatase Alcalina , Biodegradação Ambiental , Biomassa , Matéria Orgânica Dissolvida , Microalgas/metabolismo , Nitrogênio/análise , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
3.
BMJ Open Respir Res ; 9(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35058236

RESUMO

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal interstitial lung disease (ILD); other ILDs have a progressive, fibrotic phenotype (PF-ILD). Antifibrotic agents can slow but not stop disease progression in patients with IPF or PF-ILD. c-Jun N-terminal kinases (JNKs) are stress-activated protein kinases implicated in the underlying mechanisms of fibrosis, including epithelial cell death, inflammation and polarisation of profibrotic macrophages, fibroblast activation and collagen production. CC-90001, an orally administered (PO), one time per day, JNK inhibitor, is being evaluated in IPF and PF-ILD. METHODS AND ANALYSIS: This is a phase 2, randomised, double-blind, placebo-controlled study evaluating efficacy and safety of CC-90001 in patients with IPF (main study) and patients with PF-ILD (substudy). Both include an 8-week screening period, a 24-week treatment period, up to an 80-week active-treatment extension and a 4-week post-treatment follow-up. Patients with IPF (n=165) will be randomised 1:1:1 to receive 200 mg or 400 mg CC-90001 or placebo administered PO one time per day; up to 25 patients/arm will be permitted concomitant pirfenidone use. Forty-five patients in the PF-ILD substudy will be randomised 2:1 to receive 400 mg CC-90001 or placebo. The primary endpoint is change in per cent predicted forced vital capacity from baseline to Week 24 in patients with IPF. ETHICS AND DISSEMINATION: This study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. TRIAL REGISTRATION NUMBER: NCT03142191.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Inibidores de Proteínas Quinases , Ensaios Clínicos Fase II como Assunto , Fibrose , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Capacidade Vital
4.
N Biotechnol ; 66: 89-96, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34715374

RESUMO

Rapid light curves are one of the most widely used methods for assessing the physiological state of photosynthetic organisms. While the method has been applied in a range of physiological studies over the last 20 years, little progress has been made in adapting it for the new age of multi-parametric phenotyping. In order to advance research that is aimed at evaluating the physiological impact of multiple factors, the Phenoplate was developed: a simultaneous assessment of temperature and light gradients. It was used to measure rapid light curves of three marine microalgae across a temperature gradient and altered phosphate availability. The results revealed that activation of photoprotective mechanisms occurred with high efficiency at lower temperatures, and relaxation of photoprotection was negatively impacted above a certain temperature threshold in Tetraselmis sp. It was observed that Thalassiosira pseudonana and Nannochloropsis oceanica exhibited two unique delayed non-photochemical quenching signatures: in combinations of low light with low temperature, and darkness with high temperature, respectively. These findings demonstrate that the Phenoplate approach can be used as a rapid and simple tool to gain insight into the photobiology of microalgae.


Assuntos
Clorófitas , Diatomáceas , Luz , Microalgas , Clorófitas/metabolismo , Clorófitas/efeitos da radiação , Diatomáceas/metabolismo , Diatomáceas/efeitos da radiação , Microalgas/metabolismo , Microalgas/efeitos da radiação , Fotossíntese , Temperatura
5.
N Biotechnol ; 65: 61-68, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34384916

RESUMO

Microalgae produce a broad range of organic compounds that are increasingly being recognised for their value in novel product production and biotechnological applications. Most microalgae are photoautotrophic, but some are capable of either mixotrophy or heterotrophy. Reported enhanced biomass yields or contrasting metabolite profiles compared to autotrophic growth improve the economics of large-scale production of microalgae, which currently limits industrial applications. Here, the potential of a high-throughput method for the rapid screening of microalgal metabolism was assessed against 95 different carbon sources, using the cost-effective Biolog plate. Of the 5 microalgae tested, Desmodesmus communis (30 carbon sources) and Chlorella vulgaris (19 carbon sources) had the highest number of positive responses to carbon sources, whereas Chlorella sorokiniana had the most negative (toxic) response to the various carbon sources (77 carbon sources). Comparison of Biolog plate results with traditional culture techniques showed good agreement. Species with a high number of positive responses on the Biolog plate exhibited the highest biomass yield under heterotrophic conditions, whilst those with low number of positive responses exhibited the highest biomass yield under autotrophic conditions, using traditional culturing techniques. While the use of these plates is limited to obtaining axenic lines of microalgal species, the method provided a high-throughput assessment of carbon source metabolism, without the expense of undertaking large, laborious traditional culturing assessments. Such high-throughput assessments can be regarded as useful tools for progressing species selection, metabolic capacity and optimal culture conditions for microalgal biotechnology applications.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Carbono , Chlorella vulgaris/crescimento & desenvolvimento , Processos Heterotróficos , Ensaios de Triagem em Larga Escala , Microalgas/crescimento & desenvolvimento
6.
Sci Total Environ ; 765: 142753, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33121765

RESUMO

Anaerobic co-digestion (AcoD) can utilise spare digestion capacity at existing wastewater treatment plants (WWTP) to generate surplus biogas beyond the plant's internal energy requirement. Data from industry reports and the peer-reviewed literature show that through AcoD, numerous examples of WWTPs have become net energy producers, necessitating other high-value applications for surplus biogas. A globally emerging trend is to upgrade biogas to biomethane, which can then be used as town gas or transport fuel. Water, organic solvent and chemical scrubbing, pressure swing adsorption, membrane separation, and cryogenic technology are commercially available CO2 removal technologies for biogas upgrade. Although water scrubbing is currently the most widely applied technology due to low capital and operation cost, significant market growth in membrane separation has been seen over the 2015-2019 period. Further progress in materials engineering and sciences is expected and will further enhance the membrane separation competitiveness for biogas upgrading. Several emerging biotechnologies to i) improve biogas quality from AcoD; ii) accelerate the absorption rate, and iii) captures CO2 in microalgal culture have also been examined and discussed in this review. Through a combination of AcoD and biogas upgrade, more WWTPs are expected to become net energy producers.


Assuntos
Biocombustíveis , Purificação da Água , Anaerobiose , Reatores Biológicos , Digestão , Metano
7.
J Environ Manage ; 277: 111398, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039702

RESUMO

Diversion of food waste from landfill disposal to waste-to-energy facilities has become both an environmentally and economically viable option to support the circular bioeconomy. However, the liquid centrate produced during anaerobic digestion is high in total ammonia, with concentrations ~2000 g m-3, and can release gaseous emissions, including ammonia, methane, CO2 and nitrous oxide, to the atmosphere. Further treatment is required before discharge to sewer, or to the environment. Microalgal wastewater treatment systems augmented with CO2 offer a promising and cost-effective treatment solution for reducing both total ammonia concentrations and ammonia volatilisation. In this study, we investigate the effects of augmenting CO2 on nutrient removal and specifically nitrogen losses, as well as biomass productivity under two difference hydraulic retention times (HRT). Both CO2 addition and HRT affect nitrogen losses, with the percentage removal of total ammonia significantly lower (p < 0.01) when CO2 was added to the treatments, while increased HRT significantly increased (p < 0.05) total ammonia percentage removal. Total nitrogen budgets showed significantly lower (p < 0.01) abiotic nitrogen losses from the system when CO2 was added to the culture but at the expense of effluent quality. Both total suspended solids and volatile suspended solids significantly increased (p < 0.01) under longer HRT (8 days), with CO2 addition, while chlorophyll-a biomass significantly increased (p < 0.01) on longer HRT, regardless of CO2 addition. These results demonstrate that, while CO2 augmentation helped to mitigate ammonia losses to atmosphere, the trade-off was poorer effluent quality. Coupling CO2 augmentation with longer HRT increased biomass production and nutrient removal efficiency. This study provides an insight into how simple operational changes can alleviate some of the trade-offs between atmospheric losses and effluent quality. However, in order to manage the trade-off between reduced atmospheric losses and poorer effluent quality, further optimisation of the operation of the microalgal system treating food-waste centrate is required.


Assuntos
Microalgas , Eliminação de Resíduos , Amônia , Biomassa , Dióxido de Carbono , Alimentos , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias
8.
Front Plant Sci ; 11: 279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256509

RESUMO

Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.

9.
Rheumatol Ther ; 7(1): 101-119, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31721017

RESUMO

INTRODUCTION: Spebrutinib (CC-292) is an orally administered, covalent, small-molecule inhibitor of Bruton's tyrosine kinase (BTK), part of the B-cell and Fc receptor signaling pathways. This study evaluated spebrutinib pharmacology and mechanism of action over a 4-week treatment period in patients with active rheumatoid arthritis (RA). METHODS: Primary human B cells, T cells, natural killer cells, macrophages, dendritic cells, basophils, and osteoclasts were treated with spebrutinib in vitro. Clinical pharmacodynamics were studied in 47 patients with active RA on background methotrexate therapy randomized to oral spebrutinib 375 mg/day or placebo. RESULTS: In vitro, spebrutinib inhibited B-cell proliferation more potently than T-cell proliferation and reduced both lymphoid and myeloid cytokine production and degranulation, as well as osteoclastogenesis. Clinical efficacy trended higher in spebrutinib-treated RA patients, with 41.7% (10/24) achieving ≥ 20% improvement in ACR response criteria (ACR20) versus 21.7% (5/23) of placebo patients at week 4 (P = 0.25). Treatment-emergent adverse events were comparable between treatment groups. In spebrutinib-treated patients, median BTK occupancy in peripheral blood was 83%, and significant increases in total CD19+ and mature-naive CD27-CD38-IgD+ B cells and decreases in transitional CD27-CD38+ B cells were observed. Spebrutinib significantly reduced serum chemokines chemokine ligand 13 (CXCL13), macrophage inflammatory protein-1ß (MIP-1ß), and the bone resorption biomarker carboxy-terminal collagen cross-linking telopeptide (CTX-I) (P < 0.05). Clinical response to spebrutinib was associated with lower increases in CD19+ B cells and greater decreases in CXCL13 and MIP-1ß from baseline to week 4. High CD19+ B cells and low CTX-I at baseline were associated with better spebrutinib clinical response. CONCLUSIONS: Spebrutinib inhibited various leukocyte responses in vitro, including those of B cells and osteoclasts. In this small study in RA patients, spebrutinib was well tolerated, showed a downward trend for symptoms, significantly modulated B-cell populations, and reduced markers of chemotaxis and osteoclast activity. TRIAL REGISTRATION: NCT01975610.

10.
Water Res ; 164: 114921, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382151

RESUMO

Emerging contaminants (ECs) are primarily synthetic organic chemicals that have a focus of increasing attention due to either increased awareness of their potential risks to humans and aquatic biota, or only recently been detected in the aquatic environment or drinking water supplies, through improved analytical techniques. . Many ECs have no regulatory standards due to the lack of information on the effects of chronic exposure. Pharmaceuticals, personal care products, pesticides and flame retardants are some of the most frequently detected ECs in aquatic environments, with over 200 individual compounds identified, to date. Current wastewater treatment is ineffective at removing ECs and there is a vital need for the development of efficient, cost-effective EC treatment systems that can be applied to a range of scales and wastewater types. Microalgae have demonstrated potential for detoxifying organic and inorganic pollutants, with a number of large-scale wastewater treatment microalgal technologies already developed. There are three main pathways that microalgae can bioremediate ECs; bioadsorption, bio-uptake and biodegradation. Microalgal bioadsorption occurs when ECs are either adsorbed to cell wall components, or onto organic substances excreted by the cells, while bio-uptake involves the active transport of the contaminant into the cell, where it binds to intracellular proteins and other compounds. Microalgal biodegradation of ECs involves the transformation of complex compounds into simpler breakdown molecules through catalytic metabolic degradation. Biodegradation provides one of the most promising technologies for the remediation of contaminants of concern as it can transform the contaminant to less toxic compounds rather than act as a biofilter. Further research is needed to exploit microalgal species for EC bioremediation properties, such as increased bioadsorption, enhanced biodegrading enzymes and optimised growth conditions. When coupled with nutrient removal, microalgal treatment of EC can be a cost-effective viable option for the reduction of contaminant pollution in waterways.


Assuntos
Microalgas , Poluentes Químicos da Água , Biodegradação Ambiental , Monitoramento Ambiental , Humanos , Águas Residuárias
11.
Water Res ; 136: 150-159, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501759

RESUMO

Enhanced pond systems (EPS) consist of a series of ponds that have been designed to work in synergy to provide both cost-effective enhanced wastewater treatment and resource recovery, in the form of algal biomass, for beneficial reuse. Due to the limited number of full-scale EPS systems worldwide, our understanding of factors governing both enhanced wastewater treatment and resource recovery is limited. This paper investigates the seasonal performance of a full-scale municipal wastewater EPS with respect to nutrient removal from the liquid fraction, microalgal biomass production and subsequent removal through the system. In the high rate algal pond both microalgal productivity (determined as organic matter and chlorophyll a biomass) and NH4-N removal varied seasonally, with significantly higher biomass and removal rates in summer than in spring (p < 0.05) or winter (p < 0.01). Microalgal biomass was not successfully harvested in the algal harvester pond (AHP), most likely due to poor flocc formation coupled with relatively short hydraulic residence time (HRT). High percentage removal rates, from sedimentation and zooplankton grazing, were achieved in the maturation pond (MP) series, particularly in winter and spring. However, in summer decreased efficiency of biomass removal and the growth of new microalgal species suggests that summer-time HRT in the MPs could be shortened. Further modifications to the operation of the AHP, seasonal changes in the HRT of the MPs and potential harvesting of zooplankton grazers are all potential strategies for improving resource recovery and producing a higher quality final discharge effluent.


Assuntos
Lagoas/química , Águas Residuárias/química , Purificação da Água/métodos , Biomassa , Clorofila/metabolismo , Clorofila A , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Lagoas/parasitologia , Estações do Ano , Águas Residuárias/parasitologia
12.
Water Res ; 124: 504-512, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28802135

RESUMO

In the last decade, studies have focused on identifying the most suitable microalgal species for coupled high rate algal pond (HRAP) wastewater treatment and resource recovery. However, one of the challenges facing outdoor HRAP systems is maintaining microalgal species dominance. By increasing our understanding of the environmental drivers of microalgal community composition within the HRAP environment, it may be possible to manipulate the system in such a way to favour the growth of desirable species. In this paper, we investigate the microalgal community composition in two full-scale HRAPs over a 23-month period. We compare wastewater treatment performance between dominant species and identify the environmental drivers that trigger change in community composition. A total of 33 microalgal species were identified over the 23-month period but species richness (the number of species present at any given time) was low and was not related to either productivity or nutrient removal efficiency. Species turnover of the dominant microalgae happened rapidly, typically <1 week. Changes in the influent NH4-N concentration and zooplankton grazer numbers were significantly associated with species turnover, accounting for 80% of the changes in dominant species throughout the 23-month study period. Both nutrient removal and biomass production did not differ between the two HRAPs when the dominant species was the same or differed in the two ponds. These results suggest that microalgal functional groups are more important than individual species for full-scale HRAP performance. This study has increased our understanding of some of the environmental drivers of the microalgae within the HRAP environment, which may assist with improving wastewater treatment and resource recovery.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Lagoas , Dinâmica Populacional , Purificação da Água
13.
Clin Transl Med ; 5(1): 36, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27590145

RESUMO

BACKGROUND: Lung remodeling and pulmonary fibrosis are serious, life-threatening conditions resulting from diseases such as chronic severe asthma and idiopathic pulmonary fibrosis (IPF). Preclinical evidence suggests that JNK enzyme function is required for key steps in the pulmonary fibrotic process. However, a selective JNK inhibitor has not been investigated in translational models of lung fibrosis with clinically relevant biomarkers, or in IPF patients. METHODS: The JNK inhibitor CC-930 was evaluated in the house dust mite-induced fibrotic airway mouse model, in a phase I healthy volunteer pharmacodynamic study, and subsequently in a phase II multicenter study of mild/moderate IPF (n = 28), with a 4-week, placebo-controlled, double-blind, sequential ascending-dose period (50 mg QD, 100 mg QD, 100 mg BID) and a 52-week open-label treatment-extension period. RESULTS: In the preclinical model, CC-930 attenuated collagen 1A1 gene expression, peribronchiolar collagen deposition, airway mucin MUC5B expression in club cells, and MMP-7 expression in lung, bronchoalveolar lavage fluid, and serum. In the phase I study, CC-930 reduced c-Jun phosphorylation induced by UV radiation in skin. In the phase II IPF study, there was a CC-930 dose-dependent trend in reduction of MMP-7 and SP-D plasma protein levels. The most commonly reported adverse events were increased ALT, increased AST, and upper respiratory tract infection (six subjects each, 21.4 %). A total of 13 subjects (46.4 %) experienced adverse events that led to discontinuation of study drug. Nine out of 28 subjects experienced progressive disease in this study. The mean FVC (% predicted) declined after 26-32 weeks at doses of 100 mg QD and 100 mg BID. Changes in MMP-7, SP-D, and tenascin-C significantly correlated with change in FVC (% predicted). CONCLUSIONS: These results illustrate JNK enzymatic activity involvement during pulmonary fibrosis, and support systemic biomarker use for tracking disease progression and the potential clinical benefit of this novel intervention in IPF. Trial registration ClinicalTrials.gov NCT01203943.

14.
Water Res ; 89: 301-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26707731

RESUMO

Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity and CO2 augmentation is often used to overcome this limitation in summer. However, the implications of carbon limitation during winter are poorly understood. This paper investigates the effects of 0.5%, 2%, 5% and 10% CO2 addition on the winter-time performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, photosynthetic efficiency, biomass production and nutrient removal rates, along with community composition. Varying percentage CO2 addition and associated change in culture pH resulted in 3 distinct microalgal communities. Light absorption by the microalgae increased by up to 144% with CO2 addition, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. Carbon augmentation increased the maximum rate of photosynthesis by up to 172%, which led to increased microalgal biovolume by up to 181% and an increase in total organic biomass for all treatments except 10% CO2. While 10% CO2 improved light absorption and photosynthesis this did not translate to enhanced microalgal productivity. Increased microalgal productivity with CO2 addition did not result in increased dissolved nutrient (nitrogen and phosphorus) removal. This experiment demonstrated that winter-time carbon augmentation up to 5% CO2 improved microalgal light absorption and utilisation, which ultimately increased microalgal biomass and is likely to enhance total annual microalgal areal productivity in HRAPs.


Assuntos
Dióxido de Carbono/farmacologia , Microalgas/crescimento & desenvolvimento , Fotossíntese , Eliminação de Resíduos Líquidos/métodos , Biomassa , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Lagoas , Estações do Ano , Águas Residuárias/química
15.
Bioresour Technol ; 184: 222-229, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25453429

RESUMO

With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.


Assuntos
Biocombustíveis , Microalgas/metabolismo , Fotossíntese , Lagoas , Águas Residuárias , Purificação da Água/métodos
16.
Water Res ; 70: 86-96, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25514661

RESUMO

The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.


Assuntos
Luz , Microalgas/efeitos da radiação , Fotossíntese , Biomassa , Escuridão , Microalgas/metabolismo , Microalgas/fisiologia , Modelos Teóricos , Oxigênio/metabolismo
17.
Water Res ; 70: 9-26, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499895

RESUMO

Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity, particularly in summer. This paper investigates the effects of CO2 addition along a pH gradient on the performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, electron transport rate, photosynthetic efficiency, biomass production and nutrient removal efficiency. Light absorption by the microalgae increased by up to 128% with increasing CO2 supply, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. CO2 augmentation increased the maximum rate of both electron transport and photosynthesis by up to 256%. This led to increased biomass, with the highest yield occurring at the highest dissolved inorganic carbon/lowest pH combination tested (pH 6.5), with a doubling of chlorophyll-a (Chl-a) biomass while total microalgal biovolume increased by 660% in Micractinium bornhemiense and by 260% in Pediastrum boryanum dominated cultures. Increased microalgal biomass did not off-set the reduction in ammonia volatilisation in the control and overall nutrient removal was lower with CO2 than without. Microalgal nutrient removal efficiency decreased as pH decreased and may have been related to decreased Chl-a per cell. This experiment demonstrated that CO2 augmentation increased microalgal biomass in two distinct communities, however, care must be taken when interpreting results from standard biomass measurements with respect to CO2 augmentation.


Assuntos
Biomassa , Dióxido de Carbono/administração & dosagem , Concentração de Íons de Hidrogênio , Luz , Microalgas/fisiologia , Águas Residuárias , Microalgas/metabolismo , Oxigênio/metabolismo , Fotossíntese , Especificidade da Espécie
18.
Water Res ; 66: 53-62, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189477

RESUMO

When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge.


Assuntos
Microalgas/metabolismo , Fotossíntese , Eliminação de Resíduos Líquidos
19.
Environ Manage ; 54(3): 479-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24943814

RESUMO

While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.


Assuntos
Técnicas de Apoio para a Decisão , Modelos Teóricos , Qualidade da Água , Agricultura , Clorofila/análise , Clorofila A , Eutrofização , Lagos , Nova Zelândia , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
20.
Water Res ; 61: 130-40, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24911561

RESUMO

Laminar flows are a common problem in high rate algal ponds (HRAP) due to their long channels and gentle mixing by a single paddlewheel. Sustained laminar flows may modify the amount of light microalgal cells are exposed to, increase the boundary layer between the cell and the environment and increase settling out of cells onto the pond bottom. To date, there has been little focus on the effects of the time between mixing events (frequency of mixing) on the performance of microalgae in wastewater treatment HRAPs. This paper investigates the performance of three morphologically distinct microalgae in wastewater treatment high rate algal mesocosms operated at four different mixing frequencies (continuous, mixed every 45 min, mixed every 90 min and no mixing). Microalgal performance was measured in terms of biomass concentration, nutrient removal efficiency, light utilisation and photosynthetic performance. Microalgal biomass increased significantly with increasing mixing frequency for the two colonial species but did not differ for the single celled species. All three species were more efficient at NH4-N uptake as the frequency of mixing increased. Increased frequency of mixing supported larger colonies with improved harvest-ability by gravity but at the expense of efficient light absorption and maximum rate of photosynthesis. However, maximum quantum yield was highest in the continuously mixed cultures due to higher efficiency of photosynthesis under light limited conditions. Based on these results, higher microalgal productivity, improved wastewater treatment and better gravity based harvest-ability can be achieved with the inclusion of more mixing points and reduced laminar flows in full-scale HRAP.


Assuntos
Clorófitas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Adaptação Fisiológica , Microalgas/metabolismo , Fotossíntese , Lagoas/análise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...